Generatore marino Marine generator Générateur marin Marine Generator

MARINER 12000

Libretto istruzioni uso e manutenzione Instruction, use and maintenance manual
Manuel d'instructions et d'etretien

Gebrauchsanweisung und wartungsvorschriften

1. NORME DI SICUREZZA Pg. 2
2. CARATTERISTICHE TECNICHE.DEI
COMPONENTI 4
3.1) Complessivo Macchina 53.2) Cruscotto a distanza(Control Panel)6
3. CONTROLLI PRELIMINARI - 7
4. AVVIAMENTO E ARRESTO MOTORE 85.2) Arresto
5.1) Avviamento 8
5. UTILIZZAZIONE DEE GRUPPO 9
6. MANUTENZIONE 10
7.1) Cambio olio 10
7.2) Cambio liquido refrigerante 11
7.3) Cambio pastigliazinco " 11
7. DISPOSITIVI DI SICUREZZA 12
8. SCHEMA ELETTRICO
ALTERNATORE " 13
9. SCHEMA ELETTRICO CRUSCOTTO -CONTROL PANEL 14
INDEX
10. MESURES DE SECURITE Pg. 30
11. CARACTERISTIQUESTECHNIQUES" 31
12. IDENTIFICATION DES
ELEMENTS " 32
3.1) Elements de la machine " 33
3.2) Tableau de commande a distance (Control Panel) " 34
13. CONTROLES PRELIMINAIRES 35
14. DEMARRAGE ET ARRET DU MPTEUR " 36
5.1) Dèmarrage " 36
5.2) Arret " 36
15. UTILISATION DU GROUPE " 37
16. ENTRETIEN " 38
7.1) Vidange huile " 38
7.2) Vidange liquide de refroidissement 39
7.3) Replacement pastille de zinc 39
17. DISPOSTTIFS DE SECURITE 40
18. SCHEMA ELECTRIQUE
ALTERNATEUR 41
19. SCHEMA ELECTRIQUE TABLEAU DE COMMANDE-CONTROL PANEL 42
20. SAFETY RULES Pg. 16
21. TECHNICAL FEATURES 12
22. COMPONENTS IDENTIEI-
CATION 18
3.1) Unit assy 19
3.2) Remote Control Panel 20
23. PRELIMINARY CHECKS 21
24. ENGINE START AND STOP 22
5.1) Start 22
5.2) Stop 22
25. GENERATOR USE 23
26. MAINTENANCE 24
7.1) Oil replacement 24
7.2) Coolant replacement " 25
7.3) Zinc anode replacement 25
27. SAFETY DEVICES " 26
28. ALTERNATOR WIRING DIAGRAM " 27
29. CONTROL PANEL WIRING DIAGRAM " 28
INHALTSVERZEICHNIS
i. SICHERHEITSVORSCHRIFTEN St. 44
30. TECHNISCHE DATEN 45
31. DARSTELLUNG DER BESTANDTEILE 46
3.1) Gesamtbild der Maschine 47
3.2) Fernbedienung (Control Panel) 48
32. VERKONTROLLEN 49
33. ETN-UND ABSCHALTEN DES MOTORS 50
5.1) Einschalten 50
5.2) Abschalten 50
34. GEBRAUCH DER GENERATOREINHEIT 51
35. WARTUNG 52
7.1) Oelwechsel 52
7.2) KuhleIussigkeits- wechsel 53
7.3) Auswechseln derzinkanode53
36. SICHERHEITSVORRICHTUNGEN 54
37. SCHALTPLAN WECHSELSTROM- GENERATOR 55
38. SCHAETPLAN FERNBEDTENUNG (CONTROL PANEL) 56

GRAZIE PER AVER SCELTO UN PRODOTTO MASE.
Il presente libretto contiene le più importanti informazioni per un corretto uso del generatore MASE e le piccole manutenzioni periodiche.

Per ottenere le più complete soddisfazioni e le migliori prestazioni del suo generatore, si raccomanda di leggere attentamente il contenuto di questa pubblicazione.

Per eventuali ulteriori informazioni La preghiamo volersi rivolgere al piu vicino Centro Assistenza MASE che sara lieto di assisterLa.

Tutte le informazioni, le illustrazioni e le caratteristiche tecniche riportate in questa pubblicazione si riferiscono al modello esistente al momento della stampa.

La MASE si riserva il diritto di apportare modifiche senza dare alcun preavviso.

Nessuna parte di questa pubblicazione puo essere riprodotta senza autorizzazione.

MASE ELETTROMECCANICA S.p.A.

1) NORME DI SICUREZZA

Prima di usare il generatore leggere attentamente le istruzioni relative al suo funzionamento, per poter essere in grado di intervenire tempestivamente in caso di necessita.

Non permettere l^{\prime} utilizzo ad altre persone senza una apposita istruzione.

Non effettuare riparazioni o operazioni di manutenzione con il motore in funzione, e per prevenire accensioni accidentali disconnettere la batteria staccando per primo il polo negativo e successivamente il positivo.

2) CARATTERISTICHE TECNICHE

CARATTERISTICHE GENERALI	
'	Gruppo elettrogeno della serie MARINIZZATI MASE studiato per installazione fissa a bordo di imbarcazioni
ALTERNATORE	$\begin{aligned} & \text { Sincrono - monofase - senza } \\ & \text { spazzole - } 2 \text { poli } \end{aligned}$
POTENZA max.	$\begin{aligned} & 12,5 \mathrm{KW} \text { A.C. }(\operatorname{cosfi} 0,9 / 1) \\ & 11,2 \mathrm{KW} \text { A.C. } \\ & (\operatorname{cosfi} \\ & 0,9 / 1) \end{aligned}$
FREQUENZA	50 Hz .
MOTORE Tipo	```MASE Bicilindrico RM270(3000rpm) (by Ruggerini) RM271(3600rpm) 4 T Diesel raffreddato ad acqua```
CILINDRATA	c.c. 1204
POTENZA	Max. NB (Din 6270) HP-KW 25 -18.4 Cont. NA (Din 6270) HP-KW 21.5-16
ALIMENTAZIONE	Gasolio
CAPACITA' CARTER OLIO	Kg. 2.7
AVVIAMENTO	Elettrico con ricarica automatica della batteria
REGOLATORE DI GIRI	Automatico

DIMENSIONI E PESO

a	Lunghezza	100 cm.
b	Altezza	68 cm.
c	Larghezza	50 cm.
Peso		250 kg.

DIMENSIONI E PESO

a	Lunghezza	120 cm.
b	Altezza	75 cm.
c	Larghezza	65 cm.
peso		35 kg.

3) IDENTIFICAZIONE DEI COMPONENTI
3.1) ELEMENTI DELLA MACCHINA

1. MOTORE
2. ALTERNATORE
3. CRUSCOTTO ALTERNATORE
4. FILTRO GASOLIO
5. TERMOCONTATTO
6. FILTRO ARIA
7. TERMOSTATO
8. RUBINETTO SCARICO LIQUTDO REFRIGERANTE
9. ELETTROMAGNETE COMBUSTIBILE
10. POMPA COMBUSTIBILE
11. FILTRO OLIO
12. POMPA ESTRAZIONE OLIO CARTER
13. VASCHETTA LIQUTDO REERIGERANTE

14. POMPA ACQUA DI MARE
15. POMPA LIQUIDO CIRCUITO CHIUSO
16. PRESSOSTATO OLIO
17. PASTIGLIA DI ZINCO
18.* INGRESSO COMBUSTIBILE
19.* RITORNO COMBUSTIBILE
20.* INGRESSO ACQUA DI MARE
21.* COLLEGAMENTI BATTERIA

[^0]
3.2) CRUSCOTTO A DISTANZA (CONTROL PANEL)

1. COMMUTATORE ON-OFF-START
2. SPIA TEMPERATURA ACQUA
3. SPIA PRESSIONE OLIO
4. SPIA SOVRACCARICO GENERATORE
5. SPIA FUNZIONAMENTO GENERATORE
6. CONTAORE

OLIO MOTORE :
Prima di avviare il motore, verificare sempre in ogni caso che il livello dell'olio motore sia compreso fra le tacche min. e max. dell'astina Rif. l Fig. 4.
In caso contrario rimboccare fino alla tacca di livello max. tramite i tappi di carico olio Rif.2 Fig. 4
N.B. - I CONTROLLI VANNO ESEGUITI A MOTORE SPENTO

CAPACITA' OLIO L. 2,7

LIQUIDO DI RAFFREDDAMENTO :

E' importante controllare inoltre il livello del liquido refrigerante nell'apposito recipiente Rif.l Fig. 5 verificando che in ogni caso non sia al di sotto del tubo superiore del circuito Rif. 2 Fig. 5.

I M P ORTANTE:
L' uso di un carburante sporco e di qualita scadente e" causa principale del precoce deterioramento degli organi di iniezione.

USARE SEMPRE CARBURANTE PULITO E BEN DECANTATO

5.1 - AVVIAMENTO :

Prima di effettuare l'avviamento assicurarsi che non vi siano carichi applicati.
Procedere all'avviamento ruotando il commutatore Rif.l Fig. 6 in posizione on si notera l'accensione della spia Rif. 3 Fig. 6 (Pressione olio) ed entrera in funzione il segnalatore acustico. Ruotare il commutatore in posizione START e rilasciarlo ad avviamento avvenuto.
Il corretto funzionamento del gruppo sara indicato dallo spegnimento della spia Rif. 3 Fig. 6 e del segnalatore acustico e dall'accensione della spia Rif.5 Fig. 6 (Spia
funzionamento generatore).
5.2 - ARRESTO :

Prima di arrestare il generatore disinserire il carico, spegnere il motore ruotando il commutatore Rif.i Fig. 6 in posizione oFF.
6) UTILIZZAZIONE DEL GRUPPO

Il generatore può erogare una potenza di $12,5 \mathrm{KW} \mathrm{AC}$. con cosfi $=$
1 in servizio limitato e una potenza di ll, $2 \mathrm{KW} A C$. con cosfi $=1$ per servizio continuato.
Il generatore può erogare le stesse potenze fino ad un cosfi $=0,9$

IMPORTANTE
Fare attenzione che la soma dei carichi applicati non sia in ogni caso superiore alla potenza nominale del generatore.
In caso di sovraccarico prolungato si ha un aumento della temperatura interna dell'alternatore che provoca l'intervento del termostato di protezione spegnendo 11 generatore.

Per ottenere un corretto e duraturo funzionamento del generatore e' indispensabile effettuare le operazioni di manutenzione indicate nella tabella sequente:

h.		8	50	100	300
Controlli	Livello olio motore	X			
	Livello liquido refrigerante	X			
	Anodo di zinco				X
Pulizia	Filtro acqua			X	
	Cartuccia filtro combu-				
	Stibile			X	
	Olio motore			X	

7.1) CAMBIO OLIO

Svitare il tappo Rif. 2 Fig. 7 tramite la pompa a mano 1 Fig. 7 vuotare il carter motore dall'olio usato tramite l'apposito tubo. riavvitare 11 tappo 2 Fig. 7. Togliere i tappi di carico 2 Fig. 9 e introdurre olio nuovo. prima di avviare il motore riavvitare i tappi 2 Fig. 8.

Capacita carter Kg. 2,7.

L'olio SAE 10 W40 e raccomandato per una utilizzazione a tutte le temperature.
In caso chesi utilizzi un olio a viscosita unica scegliere una viscosita appropriata alla temperatura di utilizzo (VEDI TABELLA)

Per le rimanenti operazioni sul motore attenersi alle norme indicate sul libretto del costruttore.

| TEMP. OC | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ESSO PLUS
 MOTOR OIE | $50 / 30$ | $30 / 15$ | $15 / 0$ | $0 /-25$ |

7.2) SOSTITUZIONE DEL LIQUIDO REFRIGERANTE

Svuotamento del circuito
Provvedere allo svuotamento ' del liquido attraverso il rubinetto Rif. 4 Fig. 9
Per questa operazione togliere il tappo sul collettore Rif.l Fig. 9 e sulla vaschetta Rif. 3 Fig. 9. Resteranno nel motore circa L. I,9

Riempimento del circuito
Procedere al riempimento mel modo seguente :

Togliere il tappo Rif. I Fig. 9 per permettere all'aria di uscire . Riempire il circuito dal tappo sulla vaschetta Rif. 3 Fig. 9 con circa L. 3 di liquido refrigerante. Successivamente avviare il motore e provvedere al rabbocco in modo che il livello nella vaschetta non sia inferiore al tubo di ritorno Rif. 2 Fig. 9

Capacita totale del circuito L. 5,250

Utilizzare una soluzione di liquido antigelo ed acqua al 50\%.
Accertarsi che la soluzione abbia una temperatura di non congelamento di almeno - $25^{\circ} \mathrm{C}$. in caso contrario aumentare la percentuale di liquido antigelo.
7.3) SOSTITUZIONE PASTIGLIA DI ZINCO

Provvedere alla sostituzione della pastiglia di zinco svitando il tappo Rif. 1 Fig. 10.

8) DISPOSITIVI DI SICUREZZA

Al fine di evitare guasti dovuti ad un errato utilizzo o una scarsa manutenzione, il generatore dispone delle seguenti protezioni :

- Bassa pressione olio
- Sovraccarico generatore
- Temperatura elevata del liquido di refrigerazione
L'intervento dei
sopracitati segnalato dispositivi sara della spia dall'accensione corrispondente e dal segnalatore acustico.

1 - Spia temperatura acqua
2 - Spia pressione olio
3 - Spia sovraccarico generatore
4 - Spia funzionamento generatore

FUSIBILE RICARICA BATTERIA

Nel caso che il carica batteria non funzioni verificare l'efficienza Rif. 1 Fig. 12.

9) SCHEMA ELETTRICO ALTERNATORE

1. ROTORE DI ECCITAZIONE
(INDOTTO)
2. PONTE DIODI
3. VARISTORE
4. ROTORE PRINCIPALE (INDUTTORE)
5. AVVOLGIMENTO AUSILIARIO DI ECCITAZIONE
6. STATORE DI ECCITAZIONE (INDUTTORE)
7. STATORE PRINCIPALE (INDOTTO)
8. SCHEDA REGOLAZIONE
9. MORSETTIERA DI POTENZA

9a. COLLEGAMENTO MORSETTIERA IN SERIE
9b. COLLEGAMENTO MORSETTIERA IN PARALLELO
10. SELETTORE 95 V . : 130 V .
11. SELETTORE 190V. : 260 V .
12. POTENZIOMETRO REGOLAZIONE VOLTAGGIO A VUOTO
13. POTENZIOMETRO REGOLAZIONE STABILITA' A CARICO

10) SCHEMA ELETTRICO CRUSCOTTO CONTROL PANEL

1. COMMUTATORE ON-OFF-START
2. RELAIS SIPEA 0454
3. SCHEDA PROTEZIONI
4. CONTAORE
5. MORSETTIERA PANNELLO A DISTANZA
6. MORSETTIERA CRUSCOTTO GENERATORE
7. TRASFORMATORE CARICA BATTERIA
8. DIODI 25 A 400 V . CARICA BATTERIA
9. FUSIBILE 4 A.
10. MOTORINO AVVIAMENTO
11. ELETTROMAGNETE GASOLIO
12. TERMOSTATO ALTERNATORE
13. TERMOSTATO ACQUA
14. PRESSOSTATO OLIO

THANKS FOR CHOOSING A MASE PRODUCT

This manual contains the main information for a proper use of MASE generator and its routine maintenances.

To get the best satisfactions and performance from your generator it is advisable to read this manual carefully.

For further information ask the nearest MASE service center which will be pleased to help you.

All information, illustrations, directions and specifications written in this manual referees to the latest model available at the time of approval for printing.

MASE reserves the right of making changes without any previous notice.

No part of the contents of this pubblication may be copied or multiplied without the explicit and previous written permission of MASE.

Before using the generator read carefully the instructions concerning the generator to be able to intervene timely if necessary.

Do not allow other people to use it without a previous training.
Do not inspect or maintain the unit when the engine is working and to avoid any incidental ignition disconnect battery cables, first negative pole then the positive one.
2) TECHNICAL FEATURES

GENERAL FEATURES	
	Generating set of the MASE MARINER range developed to be installed in board of boats
ALTERNATOR	Synchronous - single-phase - brushless 2 pole alternator
OUTPUT max.	$\begin{array}{lll}12.5 & \mathrm{KW} \text { A.C. }(\operatorname{cosfi} 0,9 / 1) \\ 11.2 & \mathrm{~kW} \text { A.C. } & (\operatorname{cosfi} 0,9 / 1)\end{array}$
ENGINE	RM270(3000rpm) RM271 (3600rpm) (by Ruggerini) 2 cylindres, 4 stroke, Diesel, watercooled engine
DISPLACEMENT	$1204 \mathrm{c} . \mathrm{c}$.
POWER max.	$\begin{aligned} & \text { NB (Din 6270) HP - KW 25 -18.4 } \\ & \text { NA (Din 6270) HP - KW 21.5-16 } \end{aligned}$
FUEL	Diesel
OIL SUMP CAPACITY	2.7 kg.
STARTING	Electric starting with automatic battery charging
ENGINE GOVERNOR	Automatic r.p.m.

3) COMPONENTS IDENTIFICATION

3.1 UNIT ASSY

1. ENGINE
2. ALTERNATOR
3. ALTERNATOR CONTROL PANEL
4. DIESEL FILTER
5. THERMAL CONTACT
6. AIR FILTER
7. THERMOSTAT
8. COOLANT EXHAUSTING ${ }^{\circ}$ COCK
9. FUEL ELECTROMAGNET
10. FUEL PUMP
11. OIL FILTER
12. OIL SUMP SCAVENGE PUMP
13. COOLANT TANK

14. SEA WATER PUMP
15. LIQUID CLOSED CIRCUIT PUMP
16. OIL PRESSURE SWITCH
17. ZINC ANODE
18.* FUEL INTAKE
19.* FUEL BACKELOWN
20.* SEA WATER INTAKE
21.* BATTERY CONNECTION
3.2 REMOTE CONTROL PANEL

18. ON-OFF-START COMMUTATOR
19. WATER TEMPERATURE WARNING LIGHT
20. OIL PRESSURE WARNING LIGHT
21. GENERATOR OVERLOAD WARNING LIGHT
22. GENERATOR FUNCTIONING WARNING LIGHT
23. HOURMETER

4) PRELIMINARY CHECKS

ENGINE OIL :

Before starting the engine always check the oil level is between min. and max. of the dipstick Ref. I Fig. 4.
If not top up to the max. through the oil intake plugs Ref. 2 Fig. 4.

NOTE : CHECKS MUST BE DONE WHEN THE ENGINE IS OFF.

OIL CAPACITY L. 2.7

COOLANT :
It is moreover important to check coolant level in its tank Ref. l Fig. 5 making sure it is never under the circuit upper pipe Ref. 2 Fig. 5.

I MPORTANT:
Use dirty and low quality fuel is the main cause of injection parts deterioration.

ALWAYS USE CLEAN AND DECANTATED
EUEL

5) ENGINE START AND STOP

5.1 START

Before the ignition make sure there are no loads on.
Start the engine turning the commutator Ref. l Fig. 6 to position on. The warning light Ref. 3 Fif. 6 (oil pressure) will light on and the sound signaler work.
Turn the commutator to start and release it after lgnition.
A correct generator working is shown by the warning light Ref. 3 Fig. 6 and sound signaler turning off, the warning light Ref. 5 Fig. 6 (generator finctioning warning light) will light on.
5.2 STOP

Before stopping the generator disconnect the engine load turning the commutator Ref. 1 Fig. 6 to off position to stop the generator.
6) GENERATOR USE

The generator can output a 12.5 KW AC with power factor $=1$ for limited working and a $11.2 \mathrm{KW} A C$ with power factor $=1$ for continuous working. The generator can supply the same outputs up to a power factor $=0.9$.

IMPORTANT
Make sure the sum of loads is not in any case, over the generator rated output.
In case of extended overload the alternator inner temperature increases, this cause the thermostat intervention and the generator stop.

In order to get the best performances and service life from the unit it is advisable to follow the instructions written in the table below

	,	8	50	100	300
CHECK	Engine oil sump level	X			
	Coolant level	X			
	Zinc anode				X
CLEANING	Water filter			X	
REPLACEMENT	Diesel filter cartridge			X	
	Oil filter cartridge			X	
	Engine sump oil			X	

8

7.1 OIL REPLACEMENT

Unscrew plug Ref. 2 Fig. 7 By means of the manual pump Ref. 1 Fig. 7 empty the engine sump from the oil using the supplied hose then screw again plug Ref. 2 Eig. 7.
Take off the refilling plugs Ref. 2 Fig. 8 and put new oil.
Before starting the engine retigh the plugs Ref. 2 Fig. 8.

Sump capacity : Kंg. 2,7
SAE 10 W 40 oil is recommended at any temperature.
In case you use single viscosity oil choose a fitting one for the temperature of use. (see table) As for the other operations on the engine follow the instructions written on the manufacturer's manual.

TEMP. C						
ESSO PLUS MOTOR OIL						

7.2) COOLANT REPLACEMENT

CIRCUIT EMPTYING

Take off the coolant by means of the cock Ref. 4 Fig. 9, to do this unscrew plug Ref. 1 Fig. 9 on the manifold and on the tank Ref. 2 Fig. 9, by so doing about 1.9 litres will remain in the circuit.

CIRCUIT REFILLING

Refill in the following way :
unscrew plug Ref. 1 Eig. 9 to allow the air outiet.
Fill up the circuit through the plug which is on the tank Ref. 3 Fig. 9 with about L. 3 of cool ant. Then start the engine and top up so that the liquid level in the tank is not under the backflow pipe Ref. 2 Fig. 9.

CIRCUIT TOTAL CAPACITY: L. 5.250.
Use a 50\% antifreezing temperature of the solution is at least - 25° C., if not increase the antifreeze percentuage.

7.3) ZINC ANODE REPLACEMENT

Replace the zinc anode unscrewing the plug Ref. 1 Fig. 10 .

8) SAFETY DEVICES

To avoid those troubles due to wrong manosuvres or insufficient maintenance the generator has got the following devices :

- Oil low pressure
- Generator overload
- Coolant high temperature

The intervention of the above mentioned devices will be signaled by the respective warning light and the sound signaler.

1 - Water temp. warning Iight
2 - Oil pressure warning light
3 - Generatore overload warning l1ght
4 - Generator functioning warning light

BATTERY CHARGING FUSE

In case the battery does not work check the fuse efficiency Ref. 1 Fig. 12.

9) ALTERNATOR WIRING DIAGRAM

[^1]
10) CONTROL PANEL WIRING DIAGRAM

1. ON/OFF COMMUTATOR
2. SIPEA 0454 RELAX
3. PROTECTION BOARD
4. HOUR METER
5. REMOTE CONTROL PANEL TERM BOARD
6. GENERATOR CONTROL PANEL TERMINAL BOARD
7. BATTERY CHARGING TRANSFORMETER
8. BATTERY CHARGING 25 A 400 V DIODES
9. 4 A FUSES
10. STARTER
11. FUEL ELECTROMAGNET
12. ALTERNATOR THERMOSTAT
13. WATER THERMOSTAT
14. OIL PRESSURE SWITCH

NOUS VOUS FELICITONS D'AVOIR FAIT L'ACQUISITION D'UN PRODUIT MASE .

Ce manuel vous apportera une connaissance de base des caracteristiques, du fonctioonnement et de l'entretien pour le meilleur emploi du générateur MASE.

Veuillez lire soigneusement et entièrement ce manuel avant d'utiliser votre nouveau genérateur.

Si vous avez d'autres questions concernant le fonctionnement ou l'entretien du produit, veuillez consulter le centre d'Assistance MASE le plus pres.

Toutes les informations, les illustrations et les caracteristiques techniques preesentees dans ce manuel se rapportent au modele existant au moment de la publication.

La MASE se réserve le droit d'apporter des modifications sans avis prealable.

Aucune partie de cette publication ne peut etre reproduite sans autorisation.

MASE ELETTROMECCANICA S.p.A.

Avant d'utiliser le generateur, lire soigneusement les instructions concernant les commandes du générateur, afin d'avoir la possibilite, en cas de besoin, d'intervenir en temps utile.

Ne pas permettre l'emploi du génerateur a des personnes incompetentes.

Ne pas effectuer de reparations ou doperations dentretien le moteur allumé et pour prévenir des allumages accidentels, deconnecter la batterie en detachant d'abord le pole negatif et ensuite le pole positif.
2) CARACTERISTIQUES TECNIQUES

CARAGTERISTIQUES GENERALES	
ALTERNATEUR	Groupe Electrogene de la serie MARINIZZATI MASE étudie pour linstallation fixe a bord
d'embarcations	

DIMENSIONS ET POIDS

a	Longueur	100 cm.
b	Hauteur	68 cm.
c	Largeur	50 cm.
Poids		250 kg.

DIMENSIONS ET POIDS

a	Longueur	120 cm.
b	Hauteur	75 cm.
c	Largeur	65 cm.
Poids	35 kg.	

3) TDENTIFICATIONS DES ELEMENTS

3.1 ELEMENTS DE LA MACHINE

1. MOTEUR
2. ALTERNATEUR
3. TABLEAU DE COMMANDE ALTERNATEUR
4. FILTRE GAS-OIL
5. THERMOCONTACT
6. FILTRE AIR
7. THERMOSTAT
8. ROBINET D'ECOULEMENT DU LIQUIDE DE REFROIDISSEMENT
9. ELECTRO-AIMANT COMBUSTIBLE
10. POMPE COMBUSTIBLE
11. FILTRE HUILE
12. POMPE EXTRACTION HUILE CARTER
13. CUVETTE LIQUIDE DE REFROIDSSEMENT

14. POMPE EAU DE MER
15. POMPE LIQUIDE CIRCUIT FERME
16. PRESSOSTAT HUILE
17. PASTILLE ZINC
18.*ENTREE COMBUSTIBLE
19.*RETOUR COMBUSTIBLE
20.*ENTREE EAU DE MER
21.*CONNEXIONS BATTERIE

* VERSION AVEC CAISSE

INSONORISANTE

3.2) TABLEAU DE COMMANDE A DISTANCE CONTROL PANEL

1. COMMUTATEUR ON-OFF-START
2. TEMOIN TEMPERATURE EAU
3. TEMOIN PRESSION HUILE
4. TEMOIN DE SURCHARGE GENERATEUR
5. TEMOIN FONCTIONNEMENT GENERATEUR

HUILE MOTEUR

Avant de faire demarrer le moteur, verifier toujours que le niveau de l'huile du moteur soit compris entre les crans Min. et Max. de la tige rif.l fig. 4

Dans le cas contraire, remplir jusqu'au cran du niveau Max. a l'aide des bouchons de remplissage de l'huile rif. 2 fig. 4
N.B. Tout controle doit etre effectue quand le moteur est éteint.
Capacite de l'hulle L. 2,7.

LIQUIDE DE REFROIDISSEMENT

Il est important de controler le liquide refrigérant dans le recipient prévu a cet effet rif.l fig. 5 pour s'assurer qu'il n'est pas audessous du tuyau superieur du circuit rif. 2 fig. 5

IMPORTANT

L'usage d'un carburant sale et de mauvaise qualité est la cause principale de la degradation précoce des organes d'injection.

Il faut toujours utiliser un carburant propre et bien decape.
5) DEMARRAGE ET ARRET DU MOTEUR
5.1 DEMARRAGE

Avant le demarrage, vérifier que les charges ne soient pas appliquees.

Demarrer en tournant le commutateur rif.l fig. 6 sur la position ON. on remarquera l'allumage de la lampe temoin rif. 3 fig. 6 (pression de l'huile) et l'avertisseur acoustique entrera en fonction.
Faire tourner le commutateur sur la position START. et le laisser revenir a démarrage effectué.

Le bon fonctionnement du groupe sera indiqué par l'extinction de la iampe temoin rif. 3 fig. 6 et de l'avertisseur acoustique et enfin par l'allumage de la lampe témoin rif. 5 fig. 6 (lampe temoin de fonctionnement du generateur).
5.2 ARRET

Avant d'arreter le generateur, debrancher la charge.

Pour éteindre le moteur, faire tourner le commutateur rif. l fig. 6 sur la position OFF.

Le generateur peut fournir une puissance de 12.5 KW AC. avec cosfi $=1$ en service limite et une puissance de $11,2 \mathrm{KW} \mathrm{AC}$. avec cosfi $=0,9$.

IMPORTANT

Controler que la somme des charges appliquees nesoit jamais superieure a la puissance nominale du genérateur.

En cas de surcharge prolongée, l'on a une augmentation de la temperature interne de l'alternateur qui provoque l'intervention du thermostat de protection en éteignant le genérateur.

Afin dobtenir un fonctionnement correct et durable du générateur, 11 est indispensable d'effectuer les operations d'entretien indiquees dans le tableau suivant:

	h.	8	50	100	300
Controle	Niveau huile				
	carter moteur	X			
	Niveau eau échangeur chaleur	X			
	Pastille zinc				
Nettoyage	Filtre eau			x	
Replacement	cartouche filtre naphte			X	
	huile carter moteur			X	
	Cartouche filtre huile			X	

7.1 Vidange de l'huile

Dévisser le bouchon rif. 2 fig. 7 à l'aide de la pompe a main rif. 1 fig. 7
Vider le carter de l'huile usage à l'aide du tube prevu à cet effet

Revisser le bouchon rif. 2 fig. 7
Enlever les bouchons de remplissage rif. 2 fig. 8 et introduire lhuile nouvelle.

Avant de faire demarrer le moteur. revisser les bouchons rif. 2 fig. 8

Capacite carter kg.2,7.
L'huile SAE 10 W 40 est recommandee pour un usage à toutes les temperatures.

Dans le cas où une huile a viscosite unique est utilisee, il est conseille de choisir une viscosité appropriée a la temperature d'utilisation (cfr. tableau)

TABLEAU HUILE

TEMP. ${ }^{\circ} \mathrm{C}$.	$50 / 30$ 30/15 $15 / 0$ / 0 /-25									
ESSO PLUS MOTOR OIL	SAE 50	SAE	40W	SAE 30	SAE	20	W		AE	0w

7.2 REPLACEMENT DU LIQUIDE
REFRIGERANT

Desamorcage du ciucuit
Effectuer la vidange du liquide à travers le robinet rif. 4 fig. 9 et pour ce faire, enlever le bouchon sur le collecteur rif. l fig. 9 et sur la cuvette rif. 3 fig. 9 Dans le moteur il restera environ L. 1,9.

Remplissage du ciucuit
Effectuer le remplissage de la facon suivante:
Enlever le bouchon rif. lfig. 9 pour permettre la sortie de l'air. Remplir le circuit par le bouchon sur la cuvette rif. 3 fig. 9 d'environ 3 L. de liquide reffigérant.
Successivament, faire demarrer le moteur et remplir de facon que le niveau a l'interieur de la cuvette ne soit pas inferieur au tuyau de retour rif. 2 fig. 9
Capacite totale du circuit L. 5,250.
Utiliser une solution de liquide anti-gel et d'eau a 50%.
La solution doit avoir une temperature de non congélation d'au moins -25°. C.
En cas contraire, augmenter le pourcentage de liquide anti-gel.
7.3. REMPLACEMENT DE LA PASTILLE DE ZINC.

Remplacer la pastille de zinc en devissant le bouchon rif. 1 fig. 10.

En ce qui concerne les autres operations d'entretien du moteur, s'en tenir aux mesures indiques dans le manuel d'emploi et d'entretien du constructeur.

Afin d'eviter des pannes dues à une utilisation erronée ou à un mauvais entretien, le generateur dispose des protections suivantes:

- basse pression de l'huile
- surcharge du generateur
- temperature élevée du liquide de L'intervention des dispositifs cités ci-dessus l'allumage de correspondante et acoustique.

1- témoin température eau
2- témoin pression huile
3- témoin surcharge generateur
4- temoin fonctionnement générateur

FUSIble de Rechargement de batterie

Au cas où le chargement de batterie ne fonctionne pas, verifier l'efficacite rif. 1 fig. 12.

9) SCHEMA ELECTRIQUE ALTERNATEUR

1. ROTOR D'EXITATION (INDUIT)
2. PONT DIODES
3. RESISTOR THERMIQUE
4. ROTOR FRINCIPAL (INDUCTEUR)
5. BOBINAGE AUXILIAIRE D'EXITATION
6. STATOR D'EXITATION (INDUCTEUR)
7. STATOR PRINCIPAL (INDUIT)
8. FICHE DE REGLAGE
9. BORNES DE PUISSANCE

9a. CONNEXION BORNES EN SERIE
9b. CONNEXION BORNES EN PARALEELE
10. SELECTEUR 95 V : 130 V
11. SELECTEUR 190 V : 260 V
12. POTENTIOMETRE REGLAGE Vol.tage a vide
13. POTENTIOMETRE REGLAGE STABILISE SUR CHARGE

10)SCHEMA ELECTRIQUE TABLEAU DE COMMANDE CONTROL PANEL

1. COMMUTATEUR ON-OFF-START
2. RELE SIPEA 0454
3. FICHE PROTECTIONS
4. COMPTEUR
5. BORNES TABLEAU DE COMMANDE A DISTANCE
6. BORNES TABLEAU DE COMMANDE GENERATEUR
7. TRANSFORMATEUR CHARGEMENT BATTERIE
8. DIODES 25 A 400 V .
9. FUSIBLE 4 A.
10. DEMARREUR
11. ELECTRO-AIMANT GAS-OIL
12. THERMOSTAT ALTERNATEUR
13. ThERMOSTAT EAU
14. PRESSOSTAT HUILE

Das vorliegende Heft enthaelt die wichtigsten Informationen fuer den richtigen Gebrauch des MASE-generators und fuer die kieinen, regelmaessigen Wartungsarbeiten.

Um Ihre volle Zufriedenheit sowie optimale Leistungen Ihres Generators zu erhalten, wird empfohlen, den inhait dieser Veroeffentlichung aufmerksam zu lesen.

Wenn Sie weitere Informationen suchen sollten, bitten wir sie, sich an das naechstilegende MASE-Kundendienstzentrum zu wenden, wo man Ihnen gerne behilflich sein wird.

Alle Informationen, Illustrationen und technischen Daten, die in diesem Heft veroeffentlicht sind, beziehen sich auf das Modell, das zur Zeit der Veroeffentlichung existiert.

MASE behaelt sich das Recht vor, Veraenderungen ohne Vorankuendigung vorzunehmen.

Kein Teil dieser Veroeffentlichung darf ohne Genehmigung reproduziert werden.

MASE ELETTROMECCANICA S.P.A.

1) SICHERHEITSVORSCHRIFTEN

Vor dem Gebrauch des Generators die Anweisungen, die sich auf seine Bedienung beziehen, aufmerksam lesen, um rechtzeitig eingreifen zu konnen, wenn es notig sein sollte.

Anderen Personen ohne eine entsprechende Einleitung keine Benutzung gestatten.

Keine Reparatur bzw. Wartungsarbeit bei laufendem Motor ausfuhren und, um jedes zufallige Anlassen zu vermeiden, die Batterie abstellen; zuerst den Minuspol (-), dann den Pluspol (+) ausschalten.

ALEGEMEINE DATEN	
'	Generatoreinheit der MASE Seeserie, ausgearbeitet zur Installation an Bord von Booten
WECHSELSTROMGENERATOR	```Synchron - einphasig - ohne Bursten - 2 Pole```
LEISTUNG $\begin{aligned} & \text { max. } \\ & \text { cont. }\end{aligned}$	$12,5 \mathrm{KW}$ A.C. (cosfi $0,9 / 1)$ 11,2 KW A.C. (cosfi 0,9/1)
FREQUENZ	50 Hz .
MOTOR Typ	MASE Zweizylinder RM270(3000rpm) (von Ruggerini) RM271(3600rpm) 4 T Diesel wassergekuhlt
HUBRAUM	c.c. 1204
LEISTUNG	Max. NB (Din 6270) HP-KW 25-18.4 Cont. NA (Din 6270) HP-KW
TREIBSTOFF	Gasoel
FASSUNGSVERMOGEN OELWANNE	kg. 2.7
ANLASSEN Batterieladung	Elektrisch mit automatischer
DREHZAHLREGLER	Automatisch

3) DARSTELLUNG DER BESTANDTEILE

3.1) GESAMTBILD DER MASCHINE

1. MOTOR
2. WECHSEISTROMGENERATOR
3. SCHALTTAFEL WECHSELSTROMGENERATOR
4. GASOLFILTER
5. TEMPERATURABSCHALTER
6. LUFTFILTER
7. THERMOSTAT
8. ABFLUSSHAHN KUHLFLUSSTGKEIT
9. ELEKTROMAGNET TREIBSTOFE
10. TREIBSTOEEPUMPE
11. OELFILTER
12. ABSAUGPUMPE OELWANNE
13. KUHLFLUSSIGKEITWANNE

14. MEERWASSERPUMPE
15. PUMPE KUHLKREISLAUF
16. OELDRUCKSCHALTER
17. ZINKANODE
18.*TREIBSTOFFEINLASS
19.*TREIBSTOFFRUCKFLUSS
18. *MEERWASSEREINLASS
21.*BATTERIEANSCHLUSSE.

3.2) FERABEDIENUNG (CONTROL PANEL.)
19. UMSCHALTER ON-OFF-START
20. KONTROLLOLAMPE WASSERTEMPERATUR
21. KONTROLLOLAMPE OELDRUCK
22. KONTROLLOLAMPE GENERATORUBERLASTUNG
23. KONTROLEOLAMPE GENERATOR IN BETRIEB
24. BETRIEBSTUNDENZAHLER
4) VORKONTROLLEN

MOTOROEL:

Vor dem Einschalten immer und in jedem Eall uberprufen, ob der Oelstand zwichen den Strichen Min und Max des Messtabs Nr. 1 Zeich. 4 ist. Andernfalls durch die Oeleinfulldeckel Nr. 2 Zeich. 4 bis zum Maximalstrich auffullen.
N.B. - DIE KONTROLLEN MUSSEN BEI AUSGESCHALTETEM MOTOR DURCHGEFUHRT WERDEN.

OELFASSUNGSVERMOGEN L. 2,7.

KUHLFLUSSIGKEIT:
Es ist ausserdem wichtig, den Kuhlflussigkeitsstand in dem dazu bestimmten Behalter Nr. l Zeich. 5 zu kontrollieren: dabei beachten, dass er in keinem Fall unter der oberen Leitung des Kreislaufes Nr. 2 zeich. 5 sein muss.

WICHTIG:

Die Verwendung eines schmutzigen, minderwertigen Treibstoffes ist Hauptgrund fur eine vorzeitige Beschadigung der Einspritzteile.

IMMER SAUBEREN GUT
DEKANTIERTEN
TREIBSTOFF VERWENDEN.

5) EIN-UND ABSCHALTEN DES MOTORS

5.1 - EINSCHALTEN:

Sich vor dem Einschalten vergewissern, dass keine Verbraucher angeschlossen sind.
Den Umschalter Nr. 1 Zeich. 6 auf Position on drehen. Damit werden die kontrollolampe (Oeldruck) Nr. 3 Zeich. 6 und der Schallalarm eingeschaltet.
Den Umschalter auf position start drehen und ihn nach dem Anspringen wieder loslassen.
Das richtige Funktionieren des Stromerzeugers wird durch das Ausschalten der Kontrollolampe Nr. 3 Zeich. 6 und des Schallalarm, sowie durch das Einschalten der Kontrollolampe Nr. 5 Zeich. 6 (Generator $\pm n$ Betrieb) angezeigt.
5.2 - ABSCHALTEN:

Vor dem Abschalten des Generators die Verbraucher abschalten. zum Abschalten des Motors den
6) GEBRAUCH DER GENERATOREINHEIT

Der Generator kann eine Leistung von $12,5 \mathrm{KW}$ AC mit Cosfi - 1 fur Kurzbetrieb und eine Leistung von $11,2 \mathrm{KW}$ AC mit cosfi = 1 fur Dauerbetrieb versorgen.
Der Generator kann die selben Leistungen bis zu Cosfi $=0,9$ versorgen.

WICHTIG

Die Summe der angeschlossenen Verbraucher darf in keinem Fall die Nennleistung des Generators uberschreiten.
Im Falle einer fortdauernder Ueberlastung erhoht sich dife Innertemperatur des Wechselstromgenerators; der Schutzthermostat wird eingeschaltet und schaltet den Generator ab

7) WARTUNG

Um ein richtiges und dauernhaftes Funktionieren des
Stromerzeugers zu haben, ist es notwendig, die in der folgenden Tabelle angegebenen Wartungsarbeiten auszufuhren:

	h.	8	50	100	300
Kontrole	Oelstand Oelwanne	X			
	Wasserstand Warmeaustauscher	X			
	Zinkanode				X
Sauberung	Wasserfilter			x	
Auswechseln	Einsatz Gasolfilter			X	
	Einsatz oelfilter			X	
	Motorol			X	

7.1) OEL.WECHSEL

Den Deckel Nr. 2 Zeich. 7 aufschrauben. Die oelwanne durch die Handpumpe Nr. i zeich. 7 und den dazu bestimmten Schlauch leeren. Den Deckel Nr. 2 Zeich. 7 wieder zuschrauben. Die Deckel zur Oeleinfullung Nr. 2 Zeich. 9 abnehmen und neues oel einfullen. Vor dem Anlassen des Motors die Deckel Nr. 2 zeich. 8 wieder zuschrauben.

Fassungsvermogen Oelwanne kg. 2,7.

SAE 10 W40 oel wird fur die Verwendung bei jeder Temperatur empfohlen.
Falls man ein Einbereichsoel benutzt, muss man eine der Verwendungstemperatur geeignete Viskositat auswahlen
(siehe Tabelle).

| TEMP. ${ }^{\circ} \mathrm{C}$. | | $50 / 30$ | $30 / 15$ | $15 / 0$ | $0 /-25$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ESSO PLUS
 MOTOR OIL | | SAE 50 | SAE 40 W | SAE 30 | SAE 20 W | SAE 10W |
| | | | | | | |

7.2) KUHLFLUSSIGKEITSWECHSEL

Entleerung des Kreislaufes
Die Kuhlflussigkeit mittels des Hahns Nr. 4 Zeich. 9 ablassen. Darum den Deckel auf dem Krummer Nr. 1 Zeich. 9 und den auf der Wanne Nr. 3 Zeich. 9 abnehmen. Im Motor werden l.9 l. ca. bleiben.

Einfullung des Kreislaufes

Zur Einfullung handeln wie folgt:

Den Deckel Nr. I Zeich. 9 aufschrauben, um den Luftauslass zu ermoglichen.
Durch den Deckel Nr. 3 zeich. 9 auf der Wanne den Kreislauf mit 31. ca. Flussigkeit fullen.
Dann den Motor in Gang setzen und Flussigkeit nachfullen, so dass der Flussigkeitsstand in der Wanne nicht unter der Ruckflussleitung Nr. 2 Zeich. 9 steht.

Gesamtfassungsvermogen
des Kreislaufes 5,250 1.

Eine Losung mit 50\% Wasser und Frostschutzflussigkeit verwenden. Sich vergewissern, dass die Losung eine Nichtgefriertemperatur von mindestens $-25^{\circ} \mathrm{C}$ hat. Andernfalls den Prozentsatz der Frostschutzflussigkeit erholen.

7.3) AUSWECHSELN DER ZINKANODE

Zum Auswechseln der Zinkanode den Deckel Nr. 1 Zeich. 10 aufschrauben.
Fur die anderen Wartungsarbeiten sich an die Anweisungen des Motorherstellers halten.

Um Defekte zu'vermeiden, die vor allem durch falsche Bedienung oder mangelhafte Wartung verursacht werden konnen, verfugt der Generator uber folgende Schutzvorrichtungen:

- Niedrıger Oeldruck
- Generatoruberlastung
- Hohe Temperatur der Kuhlflussigkett
Das Eingreifen dieser Vorrichtungen wird durch das Einschalten der entsprechenden Kontrollampe und des Schallalarms angezeigt.

1 - Kontrollampe Wassertemperatur
2 - Kontrollampe Oeldruck
3 - Kontrollampe Generatoruberlastung
4 - Kontrollampe Generator in Betrieb

ABSCHMELZSICHERUNG
 BATTERIELADEKREIS

Falls die Batterieladung nicht funktionieren sollte. die Funktionsfahigkeit der sicherung Nr. 1 Zeich. 12 uberprufen.

9) SCHALTPLAN WECHSELSTROMGENERATOR

1. ERREGUNGSLAUFER (INDUZIERT)
2. DIODENGRUCKE
3. VARISTOR
4. HAUPTLAUFER (INDUZIEREND)
5. HILFSERREGUNGSWICKELUNG
6. ERREGUNGSSTANDER
(INDUZIEREND)
7. HAUPTSTANDER (INDUZIERT)
8. GEDRUCKTE SCHALTUNG FUR DIE EINSTELLUNG
9. LEISTUNGSKLEMMENBRETT

9a. REIHENSCHALTUNG KLEMMENBRETT
9b. PARALLEESCHALTUNG
KLEMMENBRETT
10. SCHALTER 95 V . : 130 V .
11. SCHALTER 190 V. : 260 V .
12. POTENTIOMETER SPANNUNGS-

REGULIERUNG OHNE ANGESCHLOSSENE VERBRAUCHER
13. POTENTIOMETER ZUR REGULIERUNG DER SPANNUNGSSTABILITAT MIT ANGESCHLOSSENEN VERBRAUCHERN

10) SChALTPLAN FERNBEDIENUNG CONTROL PANEL

1. UMSCHALTER ON-OFF-START
2. RELAIS SIPEA 0454
3. GEDRUCKTE SCHALTUNG SICHERHEITSVORRICHTUNGEM
4. BETRIEBSTUNDENZAHLER
5. KLEMMENBRETT FERBEDIENUNG
6. KLEMMENBRETT GENERATORSCHALTTAFEL
7. UMSPANNER BATTERIELADUNG
8. DIODEN 25 A 400 V . BATTERIELADUNG
9. ABSCHMELZSICHERUNG 4 A
10. ANLASSMOTOR
11. ELEKTROMAGNET GASOL
12. THERMOSTAT WECHSELSTROMGENERATOR
13. WASSERTHERMOSTAT
14. OELDRUCKSCHALTER

[^0]: * VERSIONE CON CASSA INSONORIZZANTE

[^1]: 1. EXCITING ROTOR
 2. DIODE BRIDGE
 3. VARISTOR
 4. MAIN ROTOR
 5. EXCITING AUXILIARY WINDING
 6. EXCITING STATOR
 7. MAIN GTATOR
 8. REGULATOR
 9. POWER TERMINAL BOARD

 9a. SERIES TERMINAL BOARD CONNECTION
 9b. PARALLEL TERMINAL BOARD CONNECTION
 10. 95 V - 330 V SELECTOR
 11. 190 V - 260 V SELECTOR
 12. NO-LOADS VOLTAGE ADJIUSTING POTENTIOMETER
 13. LOADS-ON VOLTAGE ADJIUSTING POTENTIOMETER

